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Abstract

Aim: We present a reliability-aware hierarchical learn-
ing framework for ECG-based Chagas cardiomyopathy
screening in the George B. Moody PhysioNet Challenge
2025 by Team Revenger, aiming to maximize positive case
retrieval under prevalence constraints.

Methods: The 12-lead ECGs were resampled to 400
Hz, bandpass filtered (0.5-45 Hz), and z-score normal-
ized. We used a ResNet model integrated with squeeze-
and-excitation (SE) modules for binary classification. To
address severe class imbalance and the scarcity of expert-
confirmed labels, we applied stratified upsampling and
reliability-weighted label smoothing to prioritize expert-
confirmed positives over self-reported ones. Model train-
ing used an asymmetric loss to further penalize false neg-
atives and was optimized with AdamW and a OneCycle
learning rate scheduler. Model selection was based on the
Challenge score from an internal hold-out subset.

Results: On the official hidden test set, our method re-
ceived a Challenge score of 0.163, ranking 32nd of 40 eli-
gible teams.

Conclusion: The proposed method demonstrates effec-
tive performance for ECG-based Chagas screening, high-
lighting its potential for improving detection accuracy and
reliability in resource-limited scenarios.

1. Introduction

Addressing underdiagnosis of Chagas disease through
scalable ECG-based screening is the focus of the 2025
George B. Moody PhysioNet Challenge [[1-3]. Enabled
by aggregated multi-cohort ECG datasets [4}8]], the Chal-
lenge frames a multi-source learning setting with hetero-
geneous label reliability and severe class imbalance.

In this work, we propose a reliability-aware hierar-
chical framework that prioritizes expert-confirmed la-
bels and mitigates severe class imbalance within a deep
ECG model, with optimization aligned to prevalence-
constrained sensitivity objectives.
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2. Methods

2.1. Datasets and Preprocessing

We used three ECG datasets for model training, with
substantial differences in sample size, Chagas prevalence,
and label provenance as summarized in Table[I]

Dataset  Size  Chagas rate Label provenance

SaMi-Trop 1631 100 % expert-confirmed
CODE-15% 345779 1.795 % self-reported
PTB-XL 21799 0% N/A

Table 1: Dataset statistics and label provenance. Chagas
rate is the proportion of recordings labeled positive in each
dataset. N/A indicates that confirmed Chagas cases are not
expected (non-endemic population).

All ECGs were uniformly resampled to 400 Hz, band-
pass filtered (0.5-45 Hz), and z-score normalized to zero
mean and unit variance computed as in Eq. [T}

X — Py
O x

X = (D
where x is the original ECG signal, p, and o are the
mean and standard deviation of x, respectively. We ex-
cluded ECGs shorter than 1200 samples to ensure inputs
contain enough cardiac cycles for stable model analysis.

2.2. Reliability-Aware Hierarchical Super-
vision

We introduce a hierarchical supervision scheme that en-
codes source reliability through stratified label smoothing
and adaptive upsampling. Three reliability levels are de-
fined: (1) expert-confirmed positives (SaMi-Trop, max-
imal trust), (2) self-reported samples (CODE-15%, both
positives and negatives, higher uncertainty), and (3) non-
endemic negatives (PTB-XL, very low true prevalence but
still mildly regularized). Given a one-hot label y ([0, 1]
for positives, [1,0] for negatives) and number of classes
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Figure 1: Model architecture. Left: overall network: a stem (Convld, kernel size 15, 64 output channels, Batch Normal-
ization, ReLU) followed by four bottleneck residual blocks, a global SE module, global max pooling, and an MLP head
producing C' = 2 logits. Channel widths shown (512 — 768 — 1024 — 1280) are the expanded channels. Right: internal
bottleneck structure. The middle convolution of kernel size 15 uses a stride of 4 for temporal downsampling; kernel size 1
convolutions reduce and then expand channels, and a projection convolution (kernel size 1, stride 4) aligns resolution and
width for the residual path. For clarity, dropout layers present in the implementation are omitted. Abbreviations: ks kernel
size; Ch channels; BN Batch Normalization; SE squeeze-and-excitation; MLP multi-layer perceptron.

C = 2, the smoothed target is computed as in Eq.[2}

yz(l—e)-y+%-1, ®)

where ¢ is the smoothing factor which depends on the
reliability level: 0.0 (SaMi positives), 0.6 (CODE-15%
positives & negatives), 0.2 (PTB-XL negatives). This at-
tenuates overconfident gradients for noisier or potentially
misreported labels while preserving sharp supervision on
expert-confirmed cases.

Severe class imbalance was mitigated by upsampling
positives during training: positive samples from CODE-
15% were upsampled by a factor of 3, and those from
SaMi-Trop by 12. No upsampling was applied to PTB-XL,
which contains no positives. We chose these factors after
reviewing hidden validation scores from multiple submis-
sions, as shown in Table[2]

Smoothed labels and upsampling strategies for each
dataset are summarized in Table 3

Upsample factor Challenge score

CODE-15% SaMi-Trop
- - 0.2391
3 7 0.212
3 12 0.245
10 120 0.210
6 36 0.221

Table 2: Representative upsampling schemes and corre-
sponding Challenge scores on the hidden validation set.
The model and training strategies used were the same. “-”
indicates no upsampling.

t obtained during the unofficial phase.

2.3. Model Architecture

We build upon the 1D ResNet ECG classifier of Ribeiro
et al. [4] and introduce three modifications.

(1) Bottleneck residual blocks. We replace basic
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Dataset Upsampling Smoothed labels
factor negative  positive
SaMi-Trop 12 N/A [0, 1]
CODE-15% 3 [0.7,0.3] [0.3,0.7]
PTB-XL 1 [0.9, 0.1] N/A

Table 3: Smoothed labels (computed from Eq. [2) and up-
sampling strategies for each dataset.

ResNet blocks with bottleneck blocks of kernel sizes
1-15-1 (pointwise—temporal—pointwise). The middle tem-
poral convolution applies a stride of 4 for downsampling;
the two convolutions (kernel size 1) first reduce the num-
ber of channels and then expand them with an expan-
sion factor of 4. A projection convolution (kernel size
1, stride 4) is used in the residual branch whenever tem-
poral resolution or channel width changes. Across the
four blocks, the reduced (bottleneck) channel widths are
128 — 192 — 256 — 320, yielding expanded output
widths 512 — 768 — 1024 — 1280.

(2) Global squeeze-and-excitation (SE). After the fi-
nal bottleneck block, a single global SE module (reduction
ratio 8) [9] performs temporal average pooling to a chan-
nel descriptor, applies a two-layer bottleneck multi-layer
perceptron (MLP) 1280 — 160 — 1280 with ReLLU and
sigmoid gating, and rescales the feature map channel-wise.

(3) Global pooling head for variable input length. In-
stead of flattening a fixed-length feature map as in the orig-
inal baseline, we apply global max pooling over the re-
maining temporal dimension, yielding a 1280-dimensional
vector irrespective of input length L. This vector is fed to
a lightweight two-layer classification MLP: a hidden fully
connected layer (1280 — 1024) with non-linear activa-
tion and dropout (rate 0.2), followed by a final linear layer
(1024 — 2) producing class logits.

(4) Stem and regularization. A stem Convld (ker-
nel size 15, stride 1, 64 channels) with BatchNorm and
ReLU precedes the bottleneck stack. Within each bottle-
neck block, we apply BatchNorm+ReLU after the first two
convolutions and dropout (rate 0.2) after each of those ac-
tivations. All convolutions use “same” padding to preserve
temporal length before downsampling operations.

The overall model architecture is illustrated in Fig.

2.4. Training and Implementation Setups

We employed asymmetric loss (ASL) [10] to comple-
ment the reliability-aware label smoothing strategy, jointly
addressing the challenges of severe class imbalance. Let
z = (20, z1) denote the logits and p = softmax(z); the
predicted probability of the positive class. The ASL is de-
fined in Eq. [3] with separate focusing parameters for posi-

tives and negatives and a clipped negative probability term:

L=—y-(1-p)™log(p)
- (1 - y) . (pm)77 IOg(]- - pm)a

where y is the (smoothed) positive-class target probabil-
ity, pm = max(p — m,0), (74+,7v-) = (1,4) and margin
m = 0.05. We train for 30 epochs with batch size 128 us-
ing the AdamW optimizer (initial learning rate 1 x 10~4,
peak 6 x 10~* under a OneCycle scheduler, weight decay
1 x 10~2). Early stopping (patience 10 epochs, monitored
on a fixed 20% internal hold-out subset) selects the final
model via the Challenge metric. Each training segment is
a uniform random crop (or center padding if shorter) of
length 4096 samples. The full implementation, including
model construction, data pipeline, and optimization utili-
ties, is based on the t orch—-ECG framework [[11].

3)

3. Results

The Challenge score of our team “Revenger” on the hid-
den test set was 0.163, ranking 32nd among 40 eligible
teams. This score and ranking, along with extra scores on
the internal hold-out of the public training data, and on the
hidden validation set, are summarized in Table

Training | Validation | Test
0.451 £ 0.005 0.245 | 0.163

Ranking
32/40

Table 4: Challenge scores for our submitted entries (team
“Revenger”). Training: internal hold-out mean =+ std over
repeated runs. Validation: best among 10 validation sub-
missions. Test: the unique test submission. Ranking: po-
sition on the hidden test leaderboard.

4. Discussion and Conclusions

The Challenge scores presented in Table [d] indicate that
our proposed method is effective for Chagas screening
from ECGs, albeit with substantial room for improvement.
The result demonstrates our model’s ability to learn diag-
nostically relevant features from ECGs for this task un-
der scarce and noisy supervision. This is achieved through
reliability-aware label smoothing, which incorporates both
label provenance and reliability instead of treating all pos-
itive labels uniformly. Together with the asymmetric loss
and strategic upsampling, these results indicate that explic-
itly modeling label reliability helps stabilize the learning
process more effectively than introducing additional archi-
tectural complexity. Overall, our approach offers a scal-
able and resource-efficient solution and aligns well with
the Challenge’s objective of identifying high-risk individ-
uals under limited serological testing capacity.

However, the performance gap between our internal
hold-out subset and the hidden test set indicates limitations
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in our method’s generalization capability. This is also re-
flected in the absolute performance, where our Challenge
score is substantially behind those of the top-performing
teams (e.g., 0.323, 0.283, 0.280). The leading approaches
generally leveraged some form of large-scale represen-
tation learning, such as pre-trained Vision Transformer
foundation models or self-supervised learning on exten-
sive ECG datasets. These strategies focus on building ro-
bust, general-purpose feature extractors. In contrast, our
work prioritized a distinct niche by designing a resource-
efficient pipeline that explicitly addresses the challenges of
label noise and scarcity through reliability-aware smooth-
ing and asymmetric loss, without relying on massive pre-
training. While this choice enhances practicality and sta-
bility under noisy supervision, it appears that the repre-
sentational capacity of our directly-trained model is ul-
timately lower, limiting its ability to generalize as effec-
tively as the foundation-model-based approaches. Further-
more, our static assignment of reliability weights, which
cannot adapt to instance-specific label quality, represents
another limitation compared to more dynamic or learned
weighting schemes.

Building upon these insights, future research will focus
on bridging the generalization gap while retaining our fo-
cus on learning under weak supervision. A primary di-
rection is the self-adaptive supervision framework. This
includes dynamic weighting schemes, moving beyond our
current static factors, and adaptive sampling strategies that
respond to the model’s evolving confidence during train-
ing. To further improve robustness and handle class imbal-
ance, advanced data augmentation techniques such as Cut-
Mix [12] and SMOTE [/13]] will be explored to diversify the
limited positive samples, with a particular focus on ECG-
specific transformations like lead-wise masking. Further-
more, inspired by the success of representation learning,
we plan to explore self-supervised pre-training on large-
scale unlabeled ECG data as a pivotal step to learn more
transferable representations before fine-tuning. This direc-
tion, while computationally more demanding, addresses a
key limitation identified in our current work. Addition-
ally, a multi-task learning framework leveraging auxiliary
arrhythmia labels could be integrated to impose clinically
meaningful constraints and enhance the feature represen-
tation for the primary Chagas screening task.
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